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Abstract This paper presents a comprehensive perspective of the metric of quantum states
with a focus on the geometry in the background independent quantum mechanics. We also
explore the possibilities of geometrical formulations of quantum mechanics beyond the
quantum state space and Kähler manifold. The metric of quantum states in the classical
configuration space with the pseudo-Riemannian signature and its possible applications are
explored. On contrary to the common perception that a metric for quantum state can yield a
natural metric in the configuration space when the limit � → 0, we obtain the metric of quan-
tum states in the configuration space without imposing the limiting condition � → 0. Here
Planck’s constant � is absorbed in the quantity like Bohr radii 1

2mZα
∼ a0. While exploring

the metric structures associated with Hydrogen like atom, we witness another interesting
finding that the invariant lengths appear in the multiple of Bohr’s radii as: ds2 = a2

0(∇Ψ )2.

Keywords Quantum state space · Projective Hilbert space · Manifold ·
Pseudo-Riemannian manifold · Local gauge transformations · Invariance · Connections ·
Projections · Fiber bundle · Symmetries

1 Introduction

In the light of recent studies [1, 9, 10, 13–16] of geometry of the quantum state space, the
need and call for further extension of standard geometric quantum mechanics is irresistible.
And thus an intensive follow up will be academically rewarding. Researchers studying grav-
ity have also shown considerable interest in the geometric structures in quantum mechanics
in general and projective Hilbert space in specific [7, 11–16].
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Classical mechanics has deep roots in (symplectic) geometry while quantum mechanics
is essentially algebraic. However, one can recast quantum mechanics in a geometric lan-
guage, which brings out the similarities and differences between two theories [5–7]. The
idea is to pass from the Hilbert space to the space of rays, which is the “true” space of states
of quantum mechanics. The space of rays- or the projective Hilbert space is in particular, a
symplectic manifold, which happens to be equipped with a Kähler structure. Regarding it
as a symplectic manifold, one can repeat the familiar constructions of classical mechanics.
Precisely, one of our motifs in this paper is to be able to repeat the familiar constructions
of classical mechanics in quantum geometric formalism. The present paper begins with the
generalized formalism in quantum geometry discussed recently [1], and attempts to project
a broad perspective based on it.

The distance on the projective Hilbert space is defined in terms of metric, called the
metric of the ray space or the projective Hilbert space P , is given by the following expression
in Dirac’s notation:

ds2 = 4(1 − |〈Ψ1|Ψ2〉|2) ≡ 4(〈dΨ |dΨ 〉 − 〈dΨ |Ψ 〉〈Ψ |dΨ 〉). (1)

This can be regarded as an alternative definition of the Fubini–Study metric, valid for an
infinite dimensional H.

The metric in the ray space is now being referred by physicists as the background in-
dependent and space-time independent structure, which can play an important role in the
construction of a potential “theory of quantum gravity”. The demand of background in-
dependence in a quantum theory of gravity calls for an extension of standard geometric
quantum mechanics [13–16]. The metric structure in the projective Hilbert space is treated
as background independent and space-time independent geometric structure. It is important
insight which can be the springboard for our proposed background independent generaliza-
tion of standard quantum mechanics. For a generalized coherent state, the FS metric reduces
to the metric on the corresponding group manifold [14, 16]. Thus, in the wake of ongoing
work in the field of quantum geometric formulation, the work in the present paper may prove
to be very useful. The probabilistic (statistical) interpretation of QM is thus hidden in the
metric properties of P(H). The unitary time evolution is related to the metrical structure
[14, 16] with Schrödinger’s equation in the guise of a geodesic equation on CP(N). The
metric in (1) is real and positive definite [2, 3, 25]. We cannot expect a metric with the sig-
nature of Minkowski space in the study of the metric of quantum state space, as the metric
of quantum state space is in the projective Hilbert space and therefore it is always positive
definite. However, we can define the metric of quantum states in the configuration space,
but such a metric need not always be positive definite. To be precise, the metric of quantum
state space is a metric on the underlying manifold which the quantum states form or belong
to, and therefore, it is different from the metric of space-time or any other metric associated
with the quantum states.

A quantum state in the Hilbert space corresponds to a point in the projective Hilbert
space, by means of projections. Inverse of these projections are known as fibers. And two
points in the projective Hilbert space can lie on a line which stands for neighborhood in topo-
logical sense provided the corresponding two states in the Hilbert space are connected by
means of invariance under local gauge transformations. The basic objective behind formu-
lation of the metric of quantum state space was to seek invariance in the quantum evolution
under the local gauge transformations [2–4, 17–23, 25, 27]. One can verify this fact from
(1); where, there are two parts in the expression of metric coefficient gμν , such that whenever
the first part picks up an additional term due to local gauge transformation, it gets canceled
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by a similar extra term picked up by the second part. Thus, the metric of quantum state space
is invariant under the local gauge transformations in addition to the invariance under coor-
dinate transformations. As rightly pointed out by Minic and Tze, everything we know about
quantum mechanics [13–16] is in fact contained in the geometry of CP(N). Entanglements
come from the embeddings of the products of two complex projective spaces in a higher
dimensional one; geometric phase stem from the symplectic structure of CP(N), quantum
logic, algebraic approaches to quantum mechanics etc, are all contained in the geometric and
symplectic structure of complex projective spaces [13–16]. While we only consider here the
finite dimensional case, the same geometric approach is extendible to generic infinite di-
mensional quantum mechanical systems, including field theory. Finally, the following three
lemmas summarize this discussion as:

(i) The Fubini–Study metric as given in the (1) and (3) in the limit � → 0 becomes a spatial
metric, provided the configuration space for the quantum system under consideration is
space-time. For example, if we consider a particle moving in 3-dimensional Euclidean
space, then the quantum metric for the Gaussian coherent state

Ψl(x) ∼ exp

(
− (�x − �l)2

δl2

)

yields the natural metric in the configuration space, in the limit � → 0, becomes

ds2 = d�l 2

δl2
. (2)

(ii) Similarly, the time parameter of the evolution equation can be related to the quantum
metric via

�ds = �Edt, �E2 ≡ 〈Ψ |H 2|Ψ 〉 − 〈Ψ |H |Ψ 〉2. (3)

(iii) Finally, the Schrödinger equation can be viewed as a geodesic equation on a

CP(N) = U(N + 1)

U(N) × U(1)

as:

dua

ds
+ Γ a

bcu
buc = 1

2�E
Tr(HFa

b )ub. (4)

Here ua = dza

ds
where za denote the complex coordinates on CP(N), Γ a

bc is the connection
obtained from the Fubini–Study metric, and Fab is the canonical curvature 2-form valued in
the holonomy gauge group U(N)×U(1). Here, Hilbert space is N + 1 dimensional and the
projective Hilbert space has dimensions N . Furthermore, there is enlarged vision of these
symmetries explored recently which is discussed in Sect. 2.2 of this paper in the context of
Background independent quantum mechanics (BIQM).

However, on contrary to the common perception that a metric for quantum state can
yield a natural metric in the configuration space when the limit � → 0, we find the metric of
quantum states in the configuration space without imposing the limiting condition � → 0.
The Planck’s constant � is absorbed in the quantity like Bohr radii 1

2mZα
∼ a0, where α = e2

�c

is fine structure constant and Z is corresponding atomic number.
The motivation behind our formulation in this paper is two fold: firstly, to explore a wider

perspective for the generalized definition of the metric of quantum states, and secondly to
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think beyond the quantum state space in search of pseudo-Riemannian structures by explor-
ing the metric of quantum states in the configuration space with the signature of Lorentzian
or a Minkowskian metric and its possible applications. Also, we discuss the metric of quan-
tum states in the configuration space and its invariance under coordinate transformations and
the Lorentz’ transformations.

2 The Metric of Quantum States: Generalized Definition and Space-Time
Independent Metrics

The generalized definition of the metric of quantum states was laid down recently by Aalok
et al. [1], using first principles of differential geometry. The invariant corresponding to this
generalized formulation of metric was prescribed as:

ds2 = |∇Ψ |2 = (∇μΨ )(∇νΨ )dxμdxν. (5)

The metric tensor gμν for this invariant can be given as:

gμν = Re[(∇μΨ )(∇νΨ )]. (6)

Alternatively, one can also write the symmetric tensor gμν as

gμν = (∇μΨ )∗(∇νΨ ) = 1

2
[(∇μΨ )∗(∇νΨ ) + ((∇μΨ )∗(∇νΨ ))∗]

= 1

2
[(∇μΨ )∗(∇νΨ ) + (∇νΨ )∗(∇μΨ )]. (7)

We find that this generalized definition satisfies all geometrical requirements of metric struc-
ture [1].

Following this generalized definition, the metric of quantum state space, and the metric
of quantum states in the configuration space is deduced. We also illustrate some examples
on it.

2.1 The Metric of Quantum State Space

From the generalized definition discussed here, we reproduce the expression of the metric of
quantum state space. We consider a quantum state Ψ ≡ Ψ {λ}, ∀Ψ ∈ H and the correspond-
ing covariant derivative for the quantum states [2, 3] is given by:

∇λΨ ≡
∣∣∣∣dΨ

dλ

〉
+

〈
Ψ

∣∣∣∣dΨ

dλ

〉
|Ψ 〉. (8)

Here, λ in (8) could be local co-ordinates on P . Applying this covariant derivative to the
definition of metric in (7) we obtain the desired metric coefficients:

gλλ = [(∇λΨ )∗(∇λΨ )] = 1

2
[(∇λΨ )∗(∇λΨ ) + ((∇λΨ )∗(∇λΨ ))∗]

=
[(〈

∂Ψ

∂λ

∣∣∣∣−〈Ψ |
〈
∂Ψ

∂λ

∣∣∣∣Ψ
〉)(∣∣∣∣∂Ψ

∂λ

〉
−

〈
Ψ

∣∣∣∣∂Ψ

∂λ

〉
|Ψ 〉

)]

=
〈
∂Ψ

∂λ

∣∣∣∣∂Ψ

∂λ

〉
−

〈
∂Ψ

∂λ

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣∂Ψ

∂λ

〉
−

〈
∂Ψ

∂λ

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣∂Ψ

∂λ

〉
+

〈
∂Ψ

∂λ

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣∂Ψ

∂λ

〉
〈Ψ |Ψ 〉.
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Which gives

gλλ =
[〈

∂Ψ

∂λ

∣∣∣∣∂Ψ

∂λ

〉
−

〈
∂Ψ

∂λ

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣∂Ψ

∂λ

〉]
. (9)

Also, we can write it in a generalized way as:

gμ̄ν =
[〈

∂Ψ

∂xμ

∣∣∣∣ ∂Ψ

∂xν

〉
−

〈
∂Ψ

∂xμ

∣∣∣∣Ψ
〉〈

Ψ

∣∣∣∣ ∂Ψ

∂xν

〉]
. (10)

This is same as the metric of quantum state space which was also formulated [1–4, 17–19,
21, 22, 25, 27] for the real local coordinates xμ. But this metric is no more on Kähler mani-
fold. If the metric of quantum states is defined with local co-ordinates that are not complex,
it lies on the base manifold with Riemannian character, and the local gauge group GL(n,R)

is also admissible, where n is the dimensionality of the space.
If we consider the relativistic evolution of quantum states by Klein–Gordon equation as

follow:

−∇μ∇μΨ = m2
0c

2

�2
Ψ. (11)

We immediately realize a covariant and invariant quantity resulting from it [1]:

−Ψ ∗∇μ∇μΨ = m2
0c

2

�2
Ψ ∗Ψ. (12)

This expression is covariant and also invariant under local gauge transformations. Being
inspired by the covariance and the invariance of this expression, one can formulate [1] a
metric for quantum states with the help of it as follow:

ds2 = Ψ ∗∇μ∇νΨ dxμdxν, (13)

so that

gμν = Ψ ∗∇μ∇νΨ = 1

2
[(Ψ ∗∇μ∇νΨ ) + (Ψ ∗∇μ∇νΨ )∗]. (14)

The metric coefficient corresponding to the above invariant thus takes the familiar form:

gμν = [〈∂μΨ |∂νΨ 〉 − 〈∂μΨ |Ψ 〉〈Ψ |∂νΨ 〉]. (15)

Thus the metric of quantum state space is found to be independent of choice of quantum
evolution, relativistic or non-relativistic.

The metric of quantum state space has been identified as background independent (BI)
metric structure [9, 10, 13–16]. However, by appearance itself the invariance of the geomet-
ric structure in (15) is apparent, irrespective of the choice of state function.

In the context of complex projective space CP , due to Diff(∞,C) symmetry, the “co-
ordinates” Za while representing quantum states, make no sense physically, only quantum
events do, which is the quantum counterpart of the corresponding statement on the meaning
of space-time events in General Relativity (GR). Probability is generalized and given by
the notation of diffeomorphism invariant distance in the space of quantum configurations.
The dynamical equation is a geodesic equation in this space. Time, the evolution parame-
ter in the generalized Schrödinger equation, is yet not global and is given in terms of the
invariant distance. The basic point as threshold of the background independent quantum
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mechanics (BIQM) is to notice that the evolution equation (the generalized Schrödinger
equation) as a geodesic equation, can be derived from an Einstein-like equation with the
energy-momentum tensor determined by the holonomic non-Abelian field strength Fab of
the Diff(∞ − 1,C) × Diff(1,C) type and the interpretation of the Hamiltonian as a charge.

Such an extrapolation is logical since CP(N) is an Einstein space, and its metric obeys
Einstein’s equation with a positive cosmological constant given by:

Rab − 1

2
Rgab − Λgab = 0. (16)

The diffeomorphism invariance of the new phase space suggests the following dynamical
scheme for the (BIQM) as:

Rab − 1

2
Rgab − Λgab = Tab, (17)

with Tab be given as above.
Furthermore,

∇aF
ab = 1

2�E
Hub. (18)

The last two equations imply via the Bianchi identity, a conserved energy-momentum tensor:

∇aT
ab = 0. (19)

This taken together with the conserved “current” as:

jb = 1

2�E
Hub, and ∇aj

a = 0; (20)

implies the generalized geodesic Schrödinger equation. Thus (17) and (18), being a closed
system of equations for the metric and symplectic structure do not depend on the Hamil-
tonian, which is the case in ordinary quantum mechanics. By imposing the conditions of
homogeneity and isotropy on the metric by means of number of Killing vectors, the usual
quantum mechanics can be recovered [7, 13–16]. And this limit does not affect the geodesic
equation

dua

ds
+ Γ a

bcu
buc = 1

2�E
Tr(HFa

b )ub, (21)

due to the relation

�dτ = 2�Edt. (22)

The reformulation of the geometric QM in this background independent setting gives us
lot of new insights. The utility of the BIQM formalism is that gravity embeds into quantum
mechanics with the requirement that the kinematical structure must remain compatible with
the generalized dynamical structure under deformation. The requirement of diffeomorphism
invariance places stringent constraints on the quantum geometry. We must have a strictly (i.e.
non-integrable) almost complex structure on the generalized space of quantum events.

The symmetries as described by the quotient set

CP(N) = U(N + 1)

U(N) × U(1)
,
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have limitations. In an extended framework of geometric quantum mechanics the invariance
of the metric structure had been suggested [9, 10, 13–16] for CP(∞) as

Diff(∞,C)

Diff(∞ − 1,C) × Diff(1,C)
.

By insisting on the diffeomorphism invariance in the state space and on preserving the de-
sirable complex projective properties of Cartan’s rank 1 symmetric spaces such as CP(N),
we arrive at the ensuing coset state space

Diff(∞,C)

Diff(∞ − 1,C) × Diff(1,C)

as the minimal phase space candidate for a background independent quantum mechanics
(BIQM).

But, this does not seem to guarantee an almost complex structure [9]. Thus the only
alternative seem to satisfy the almost complex structure is the Grassmannian. By the corre-
spondence principle, the generalized quantum geometry must locally recover the canonical
quantum theory encapsulated in P(N ) and also allows for mutually compatible metric and
symplectic structure, supplies the framework for the dynamical extension of the canonical
quantum theory.

The Grassmannian:

Gr(Cn+1) = Diff(Cn+1)/Diff(Cn+1,Cn × {0}). (23)

In the limit n → ∞ limit satisfies the necessary conditions [9, 10]. This space is gener-
alization of P(N ). The Grassmannian is a gauged version of complex projective space,
which is the geometric realization of quantum mechanics. The utility of this formalism is
that gravity embeds into quantum mechanics with the requirement that the kinematical struc-
ture must remain compatible with the generalization dynamical structure under deformation.
The quantum symplectic and metric structure, and therefore the almost complex structure,
are themselves fully dynamical.

2.2 The Metric of Quantum States in a Configuration Space

In this exercise we explore the possibilities beyond the geometry of projective Hilbert space
and Kähler manifold. Consequently, we aim to get metric of quantum states with the classi-
cal nature.

In the formalism of geometric quantum mechanics, coordinates are not meaningful. On
a Kähler manifold in the quantum state space, invariance under the local gauge transforma-
tions is same as invariance under the coordinate transformations. This is due to the reason
that in the quantum state space, quantum states themselves could play the role of coordi-
nates.

On the other hand, a metric with classical nature does not admit invariance under the local
gauge transformations. And for which, the invariance under the coordinate transformations
is enough. However, if we compromise by not retaining the invariance under local gauge
transformations, and still ensuring the invariance under coordinate transformations, we can
obtain a metric with classical nature.

Thus, we explore the possibility of a scenario where invariance under the local gauge
transformations may be lost but invariance under coordinates is still retained.

The definition of the metric tensor in (6) and (7) involves only first order derivatives, thus
even if we use ordinary partial derivatives instead of the covariant derivative defined in (8),
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Fig. 1 A scheme of metric
formulation on different
manifolds

the metric properties of gμν remain unaffected. Also, even if we do not apply the complex
conjugation, and consider only the real part of (6), we still retain the metric structure. How-
ever, for such a metric positive-definiteness is no more assured, as it is not the metric of
quantum state space and no pull back metric exists for this metric. Moreover, this is metric
in the configuration space, and the nature and signature of the metric will depend upon the
choice of wave function. We redefine our metric as:

ds2 = Re(∇Ψ )2 = Real Part[(∇μΨ )(∇νΨ )]dxμdxν, (24)

such that,

gμν = Real Part[(∇μΨ )(∇νΨ )] = Real Part

[(
∂Ψ

∂xμ

)(
∂Ψ

∂xν

)]
. (25)

It has been shown [1] that the ds being differential form guarantees invariance of this metric
under the coordinate transformations, and the quantity

gμν =
(

∂Ψ

∂xμ

)(
∂Ψ

∂xν

)

is a transformable quantity.
Though, quantum states live in Hilbert space, they represent physical states and do de-

pend on the parameters of the physical configuration space. Thus, it is just not possible that
they do not affect the configuration space in which they describe physical systems. Thus one
can say that metric of quantum states in the configuration space being discussed here is the
imprint of the quantum states which they leave on the configuration space. This is precisely
the essence of metric in the configuration space. We cannot say anything further about the
physical significance of this metric, unless we choose a specific physical function.

To avoid confusions, we clarify that the metric on configuration space is not at all being
deduced from the Fubini–Study metric. We have a generalized geometric structure in the
beginning, from which we deduce the metric of quantum state space as well as metric on the
configuration space. Also, one may surprise, “How do we get two different metric structures
from a generalized definition?” Answer is simple! The coordinates used in case of metric
of quantum states in the quantum state space, are real local coordinates on the manifold
of the quantum states in the projective Hilbert space P . Where as, in case of metric in
configuration space, the coordinates used are the coordinates on space-time. Also, one could
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notice the reasons for invariance of the metric of quantum states in ray space under local
gauge transformations. The ‘connection’

〈
Ψ

∣∣∣∣∂Ψ

∂λ

〉

sitting inside the covariant derivative

∇λΨ ≡
∣∣∣∣dΨ

dλ

〉
+

〈
Ψ

∣∣∣∣dΨ

dλ

〉
|Ψ 〉,

and having rooted its feet in local coordinates, always keeps connecting the initial state
with the final state. This results into the invariance of the metric of the ray space under
local gauge transformations, which is precisely the essence of the metric formulation in ray
space. In case of metric in the configuration space it does not happen, and metric remains
invariant only under coordinate transformations. It should be noticed that if the metric of
quantum states is defined in the configuration space with the space-time co-ordinates, the
base manifold M on which it lies, carries a (pseudo) Riemannian metric as well, and the
tetrad can naturally be chosen to bring the metric gμν to a diagonal Minkowski form, and
then the Lorentz group SO(3,1) appears as a local gauge group.

We now illustrate some examples, to show how different metric structures with different
signatures could be obtained.

3 Metric Corresponding to Hydrogen Like Atom

To illustrate an example, we describe the metric structure corresponding to the Hydrogen
atom wave function. For this, we consider the eigenfunctions Ψ100, Ψ200, Ψ210, Ψ211 of Hy-
drogen atom; generally represented by Ψnlm, where n, l, and m are principal, azimuthal and
magnetic quantum numbers respectively.

Firstly, we choose the wave function Ψ100 of the Hydrogen like atom:

Ψ100 =
(

1√
π

)(
1

a0

)3/2

(e
− r

a0 )(e−i
W1
�

t ). (26)

Here a0 = �
2

μe2 = 0.529 × 10−8 cm, is the Bohr’s radius, and W1 = −μe4

2�2 = −2.15 ×
10−11 ergs, is the lowest energy level of Hydrogen atom.

For brevity, we substitute 1√
π
( 1

a0
)3/2 = C0 and W1

�
= ω0, such that the above wave func-

tion reduces to a simpler form:

Ψ100 = C0(e
− r

a0 )(e−iω0t ). (27)

While working in the orthogonal co-ordinates the off-diagonal terms of the line element
vanish, and the diagonal metric coefficients corresponding to the quantum state Ψ ≡ Ψ (r, t),
∀Ψ ∈ H are given by:

grr = Re

[(
∂Ψ

∂r

)(
∂Ψ

∂r

)]
=

[(
C0

a0

)2

(e
− 2r

a0 ) cos 2ω0t

]
, (28)
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and

gtt = Re

[(
∂Ψ

∂t

)(
∂Ψ

∂t

)]
= −[(C0ω0)

2(e
− 2r

a0 ) cos 2ω0t]. (29)

The corresponding invariant ds appears as:

ds2 =
[(

C0

a0

)2

(e
− 2r

a0 ) cos 2ω0t

]
dr2 − [(C0ω0)

2(e
− 2r

a0 ) cos 2ω0t]dt2. (30)

We now describe metric for the wave function Ψ200 of the Hydrogen atom:

Ψ200 =
(

1

4
√

2π

)(
1

a0

)3/2(
2 − r

a0

)
(e

− r
2a0 )(e−i

W2
�

t ). (31)

On substituting 1
4
√

2π
( 1

a0
)3/2 = C and W2

�
= W1

4�
= ω, the above wave function reduces to a

simpler form:

Ψ200 = C(e
− r

2a0 )

(
2 − r

a0

)
(e−iωt ).

And the metric structure corresponding to this quantum state Ψ ≡ Ψ (r, t), is given by:

ds2 =
[

4

(
C

a0

)2

(e
− r

a0 ) cos 2ωt

]
dr2 −

[
(Cω)2

(
2 − r

a0

)2

(e
− r

a0 ) cos 2ωt

]
dt2. (32)

Further we describe metric for the wave function Ψ210 of the Hydrogen atom:

Ψ210 =
(

1

4
√

2π

)(
1

a0

)3/2(
r

a0

)
(cos θ)(e

− r
2a0 )(e−i

W2
�

t ) = C

(
r

a0

)
(cos θ)(e

− r
2a0 )(e−iωt ).

(33)
However, we can consider an un-normalized dimensionless form of this wave function for
simplicity as:

Ψ̃ =
(

r

a0

)
(cos θ)(e

− r
2a0 )(e−iωt ).

And redefine another function from it as:

Ψ = a0(Ψ̃ ) = r(cos θ)(e
− r

2a0 )(e−iωt ).

So that the invariant ds2 turns out to be:

ds2 = a2
0(∇Ψ )2 = Re

[(
∂Ψ

∂xμ

)(
∂Ψ

∂xν

)]
dxμdxν, (34)

a multiple of square of the Bohr radii. Interestingly, the invariant ds appearing as multiple
of Bohr radii invokes a sense of aesthetics too, which one cannot but appreciate.

The metric coefficients corresponding to the quantum state Ψ ≡ Ψ (r, θ, t), are given by:

grr = Re

[(
∂Ψ

∂r

)(
∂Ψ

∂r

)]
=

[
(e

− r
a0 )

(
1 − r

2a0

)2

cos2 θ cos 2ωt

]
, (35)
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gθθ = Re

[(
∂Ψ

∂θ

)(
∂Ψ

∂θ

)]
= [(e− r

a0 )r2 sin2 θ cos 2ωt], (36)

gtt = Re

[(
∂Ψ

∂t

)(
∂Ψ

∂t

)]
= −[r2ω2(e

− r
a0 ) cos2 θ cos 2ωt]. (37)

Similarly, we can also describe metric for the wave function Ψ211 of the Hydrogen atom:

Ψ211 =
(

1

4
√

2π

)(
1

a0

)3/2(
r

a0

)
eiϕ

√
2
(sin θ)(e

− r
2a0 )(e−i

W2
�

t ).

We follow the preceding example and consider the un-normalized dimensionless wave func-

tion corresponding to Ψ211, and construct a wave function Ψ , from Ψ211 as: Ψ = Ψ211+Ψ ∗
211

2 ,
which is still a wave function of the Hydrogen atom. However, we choose to write the wave

function Ψ as Ψ = Ψ211+Ψ ∗
211

2 e−iωt , such that function Ψ remains complex in nature. The

metric coefficients corresponding to this quantum state Ψ = r sin θ(e
− r

2a0 ) cosϕ(e−iωt ), are
given by:

grr = Re

[(
∂Ψ

∂r

)(
∂Ψ

∂r

)]
=

[
sin2 θ cos2 ϕ(e

− r
a0 )

(
1 − r

2a0

)2

cos 2ωt

]
, (38)

gθθ = Re

[(
∂Ψ

∂θ

)(
∂Ψ

∂θ

)]
= [r2 cos2 θ cos2 ϕ(e

− r
a0 ) cos 2ωt], (39)

gϕϕ = Re

[(
∂Ψ

∂ϕ

)(
∂Ψ

∂ϕ

)]
= [r2 sin2 θ sin2 ϕ(e

− r
a0 ) cos 2ωt], (40)

gtt = Re

[(
∂Ψ

∂t

)(
∂Ψ

∂t

)]
= −[ω2r2 sin2 θ cos2 ϕ(e

− r
a0 ) cos 2ωt]. (41)

This is metric with the signature (+,+,+,−) and the corresponding line element appears
as:

ds2 = a2
0Re(∇Ψ )2

=
[

sin2 θcos2ϕ(e
− r

a0 )

(
1 − r

2a0

)2

cos 2ωt

]
dr2

+ [r2 cos2 θcos2ϕ(e
− r

a0 ) cos 2ωt]dθ2

+ [r2 sin2 θsin2ϕ(e
− r

a0 ) cos 2ωt]dϕ2 − [ω2r2 sin2 θcos2ϕ(e
− r

a0 ) cos 2ωt]dt2. (42)

We notice that the wave function Ψ of the Hydrogen atom defined here, admits metric in the
four space with coordinates (r, θ,ϕ, t), whereas Ψ100, Ψ200 and Ψ210 fail to do so.

3.1 Invariance Under the Lorentz’ (Relativistic) Transformations

As discussed, the metric structure in the configuration space is invariant under the coordi-
nate transformations only. But, if the wave function under consideration is relativistic, the
invariance of the metric under the Lorentz’ transformations is also ensured.1 However, the

1We ought to call the invariance resulting from the use of relativistic wave function as Dirac’s invariance,
instead of Lorentz’ invariance, as the relativistic wave function of the Hydrogen atom was given by Dirac.
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term ‘Lorentz’ invariance is a misnomer in this context. As the relativistic wave function of
the Hydrogen atom, was given by Dirac. Thus we simply mean that a relativistic formulation
turns non-relativistic in the given limits. In such a case the metric in the configuration space
is invariant under the coordinate transformation as well as relativistic transformation of the
wave function. We now illustrate an example of the metric corresponding to relativistic wave
function of Hydrogen like atom.

The relativistic wave function of Hydrogen like atom as proposed by Dirac [8] can be
given as:

Ψ̃n=1,j=1/2,↑(r, θ,ϕ)

= (2mZα)3/2

√
4π

√
1 + γ

2Γ (1 + 2γ )
(2mZαr)γ−1e−mZαr

(
i(1 − γ )

Zα

)
sin θe−iϕ; (43)

where γ ∼=
√

1 − (Zα)2

n
, α = e2

�c
is fine structure constant, and 1

2mZα
∼ a0 is the Bohr radii.

In the non-relativistic limits γ → 1 and (1−γ )

Zα
→ 0, and the wave function reduces to

Schrödinger wave function. By taking the un-normalized wave function and transferring
the other constants to left hand side, the above wave function reduces to a simpler form:

Ψ̃ = i

(
r

a0

)γ−1

e
− r

a0 sin θe−iϕ.

We now construct a wave function Ψ , from Ψ̃ as: Ψ = Ψ̃ +Ψ̃ ∗
2 , and choose to write the wave

function Ψ as Ψ = Ψ̃ +Ψ̃ ∗
2 e−iωt , such that function Ψ remains complex in nature. Now, with

the help of the wave function Ψ = (r)γ−1e
− r

2a0 sin θsinϕe−iωt ; we formulate our metric as:

ds2 = a
2(γ−1)

0 {Re(∇Ψ )2} = Real Part[(∇μΨ )(∇νΨ )]dxμdxν,

or

ds2 =
[
r2(γ−2)(e

− r
a0 ) sin2 θsin2ϕ

(
γ − 1 − r

2a0

)2

cos 2ωt

]
dr2

+ [r2(γ−1)(e
− r

a0 ) cos2 θsin2ϕ cos 2ωt]dθ2

+ [r2(γ−1)(e
− r

a0 ) sin2 θ cos2 ϕ cos 2ωt]dϕ2

− [r2(γ−1)(e
− r

a0 ) sin2 θ sin2 ϕ cos 2ωt]dt2. (44)

Thus it is quite evident that contrary to the common perception that a metric for quantum
state can yield a natural metric in the configuration space only when the limit � → 0, we
find the metric of quantum states in the configuration space without imposing the limiting
condition � → 0. The Planck’s constant � is absorbed in the quantity like Bohr radii 1

2mZα
∼

a0. Also, we find that the metric in the configuration space could turn out to be a metric
of space-time, wherever configuration space coincides with space-time (see Refs. [2, 3]).
This is with assumption that wherever the configuration space coincides with space-time,
the natural metric on CP(N) in the � → 0 limit gives a spatial metric [9, 10, 13–16].

Hydrogen atom represents the matter in its simplest form. Therefore, the investigation of
the geometric features associated with Hydrogen atom has a rationale behind it.
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4 Summary and Discussion

This paper aims to present a discussion on the metric of quantum states in a comprehensive
perspective. Interestingly, the metric of quantum state space explored in the geometric quan-
tum mechanics, has gained renewed interest of scientific community as formalism pertain-
ing to background independent quantum mechanics (BIQM). We strongly push our demand
that the configuration space metric can be the actual physical spatial metric in special cases.
The suitable quantum system can then have a very special configuration space and should
describe gravity in its premise.

We in this paper have further explored the reasons of invariance of the geometric struc-
ture like metric in the ray space. Also, it is interesting to see that the mechanism causing
invariance under the local gauge transformations plays important role in the construction of
‘quantum information theory’ [24, 26].

This discussion summarizes here the metric structures so far explored in the geometric
quantum mechanics. We have encountered metric structures on three different manifolds:
Kähler manifold or CP(N), Riemannian manifold, and space-time (pseudo-Riemannian)
manifold.

If the metric of quantum states is defined with the complex coordinates in the quantum
state space, known as Fubini–Study metric, it lies on the Kähler manifold or CP(N), which
is identified with the quotient set U(N+1)

U(N)×U(1)
. By insisting on the diffeomorphism invariance

in the state space and on preserving the desirable complex projective properties of Cartan’s
rank 1 symmetric spaces such as CP(N), an extended framework for such a representation
has been suggested as the Grassmannian: Gr(Cn+1) = Diff(Cn+1)/Diff(Cn+1,Cn × {0}).

Apart from the fundamental difference that, the metric of quantum state space is metric
in the ray space and the metric otherwise stated is in the configuration space, there are
many other differences, including the underlying difference in the signature of the metric
structures. The signature of the metric of quantum state space is always positive definite.
Where as, the metric in the configuration space need not be positive definite, as it is clear
from the examples cited in this discussion.

And if the metric of quantum states is defined with local co-ordinates that are not com-
plex, it lies on the base manifold with Riemannian character, and the local gauge group
GL(n,R) is also admissible.

Whereas, if the metric of quantum states is defined in the configuration space with the
space-time co-ordinates, the base manifold M on which it lies, carries a (pseudo) Rie-
mannian metric as well, and the tetrad can naturally be chosen to bring the metric gμν to
a diagonal Minkowski form. And then the Lorentz group SO(3,1) could also appear as a
local gauge group.

We must notice that the group symmetry observed in the quotient set U(N+1)

U(N)×U(1)
in case

of Fubini–Study metric is the symmetry over the transformations of the wave functions.
Whereas, the group symmetry mentioned in the later cases as GL(n,R) and SO(3,1), if
observed, could be due to the transformations of co-ordinates.

On a Kähler manifold in the quantum state space, invariance under the local gauge trans-
formations is same as invariance under the coordinate transformations. This is due to the
fact that in the quantum state space, quantum states themselves could play the role of coor-
dinates. On the other hand, a metric with classical nature does not admit invariance under
the local gauge transformations. And for which, the invariance under the coordinate trans-
formations is enough.

Thus, we find that the metric in the configuration space has lost invariance under local
gauge transformations, but it is still invariant at least under the coordinate transformations.
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Also, if the wave function subject to condition is relativistic, it is invariant under the Lorentz’
transformation as well.

With reference to the holistic view of the entire formalism, it is again clarified here that
the metric on configuration space is not at all being deduced from the Fubini- Study metric.
We have a generalized geometric structure in the beginning, from which we deduce the
metric of quantum state space as well as the indefinite metrics on the configuration space.

Among other distinctions, we find the metric coefficients gμν = [〈∂μΨ |∂νΨ 〉 − 〈∂μΨ |Ψ 〉
〈Ψ |∂νΨ 〉], defined in the metric of quantum state space, are under the integrals and therefore
constant. Where as, the metric coefficients in the case of metric in the configuration space
are not constant.

Since, the metric coefficients in the metric of quantum state space are constant, all their
derivatives readily vanish. Consequently, one cannot calculate Christoffel symbols, Ricci
tensor, and Einstein tensor. Where as, for the metric of quantum states in the configuration
space, there is possibility that one can explore the other geometric features associated with
the metric of quantum states.

If we insist on the desired relation between the quantum state space metric and an ar-
bitrary metric on the classical configuration space, then the kinematics of QM has to be
altered [13–16]. Moreover, if the induced classical configuration space is to be actual space
of space-time, only a special quantum system will do. We are thus induced to explore an ap-
propriate metric arising due to quantum states and living on the space-time manifold, which
in turn may enable us to do general relativity (GR) on it.

Acknowledgement The author wishes to express his gratefulness to Prof. A. Ashtekar and late J. Anandan
for explaining the niceties of the geometric quantum mechanics.
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